Quantum dot behavior in bilayer graphene nanoribbons.
نویسندگان
چکیده
Bilayer graphene has recently earned great attention for its unique electronic properties and commendable use in electronic applications. Here, we report the observation of quantum dot (QD) behaviors in bilayer graphene nanoribbons (BL-GNRs). The periodic Coulomb oscillations indicate the formation of a single quantum dot within the BL-GNR because of the broad distribution function of the carrier concentration fluctuation at the charge neutrality point. The size of the QD changes as we modulate the relative position between the Fermi level and surface potential. Furthermore, the potential barriers forming the QD remain stable at elevated temperatures and external bias. In combination with the observation of transport gaps, our results suggest that the disordered surface potential creates QDs along the ribbon and governs the electronic transport properties in BL-GNRs.
منابع مشابه
The New Graphene Family Materials: Synthesis and Applications in Oxygen Reduction Reaction
Graphene family materials, including graphene quantum dots (GQDs), graphene nanoribbons (GNRs) and 3D graphene (3D-G), have attracted much research interest for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries, due to their unique structural characteristics, such as abundant activate sites, edge effects and the interconnected network. In this review, we summarize recent...
متن کاملQuantum dot behavior in graphene nanoconstrictions.
Graphene nanoribbons display an imperfectly understood transport gap. We measure transport through nanoribbon devices of several lengths. In long (>/=250 nm) nanoribbons we observe transport through multiple quantum dots in series, while shorter (</=60 nm) constrictions display behavior characteristic of single and double quantum dots. New measurements indicate that dot size may scale with cons...
متن کاملSynthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
Scaling graphene down to nanoribbons is a promising route for the implementation of this material into devices. Quantum confinement of charge carriers in such nanostructures, combined with the electric field-induced break of symmetry in AB-stacked bilayer graphene, leads to a band gap wider than that obtained solely by this symmetry breaking. Consequently, the possibility of fabricating AB-stac...
متن کاملElectron transport, interaction and spin in graphene and graphene nanoribbons
Since the isolation of graphene in 2004, this novel material has become the major object of modern condensed matter physics. Despite of enormous research activity in this field, there are still a number of fundamental phenomena that remain unexplained and challenge researchers for further investigations. Moreover, due to its unique electronic properties, graphene is considered as a promising ca...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2011